Long noncoding RNA SNHG6 couples cholesterol sensing with mTORC1 activation in hepatocellular carcinoma

  • Chu, BB et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161291–306 (2015).

    CASE
    Article

    Google Scholar

  • Luo, J., Yang, H. & Song, BL Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21225-245 (2020).

    CASE
    Article

    Google Scholar

  • Luo, J., Jiang, L., Yang, H. & Song, BL Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic 18209–217 (2017).

    CASE
    Article

    Google Scholar

  • Luo, J., Yang, H. & Song, BL Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21225-245 (2020).

  • Attard, G., Cooper, CS & Bono, J. Steroid hormone receptors in prostate cancer: a hard habit to break? cancer cell 16458–462 (2009).

    CASE
    Article

    Google Scholar

  • Degirolamo, C., Modica, S., Palasciano, G. & Moschetta, A. Bile acids and colon cancer: solving the puzzle with nuclear receptors. Mol Trends. Med. 17564-572 (2011).

    CASE
    Article

    Google Scholar

  • Zhang, X., Coker, OO, Chu, ES, Fu, K. & Yu, J. Dietary cholesterol drives liver cancer associated with fatty liver disease by modulating gut microbiota and metabolites. Intestine 70761–774 (2020).

  • Liu, GY & Sabatini, DM mTOR at the crossroads of nutrition, growth, aging and disease. Nat. Rev. Mol. Cell Biol. 21183–203 (2020).

    CASE
    PubMed
    PubMed Center

    Google Scholar

  • Anandapadamanaban, M., Masson, GR, Perisic, O., Berndt, A. & Williams, RL Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366203–210 (2019).

    CASE
    Article

    Google Scholar

  • Mossmann, D., Park, S. & Hall, MN mTOR signaling and cellular metabolism are mutual determinants of cancer. Nat. Reverend Cancer 18744–757 (2018).

    CASE
    Article

    Google Scholar

  • Castellano, BM et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex. Science 3551306 (2017).

    CASE
    Article

    Google Scholar

  • Lim, CY et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signaling in Niemann-Pick type C. Nat. Cell Biol. 211206-1218 (2019).

    CASE
    Article

    Google Scholar

  • Blood, L. et al. The mitochondrial non-coding long RNA GAS5 regulates TCA metabolism in response to nutrient stress. Nat. Metab. 390-106 (2021).

    CASE
    Article

    Google Scholar

  • Lin, A. et al. The lncRNA LINK-A interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 19238-251 (2017).

    CASE
    Article

    Google Scholar

  • Blood, LJ et al. LncRNA CamK-A regulates Ca2+– Signaling-mediated remodeling of the tumor microenvironment. Mol. Cell 7271–83 (2018).

    CASE
    Article

    Google Scholar

  • Li, RH et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling. Cell Res 311088-1105 (2021).

    CASE
    Article

    Google Scholar

  • Xing, Z et al. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 1591110-1125 (2014).

    CASE
    Article

    Google Scholar

  • Satriano, L., Lewinska, M., Rodrigues, PM, Banales, JM & Andersen, JB Metabolic rearrangements in primary liver cancers: causes and consequences. Nat. Rev. Gastroenterol. Hepatol. 16748–766 (2019).

    CASE
    Article

    Google Scholar

  • Fazal, FM, Han, S., Kaewsapsak, P., Parker, KR & Ting, AY Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178473–490 (2019).

  • Julien, B. et al. Membrane-associated RNA-binding proteins orchestrate organelle-coupled translation. Cell Biol Trends. 29178-188 (2018).

  • Chu, B.-B. et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161291–306 (2015).

  • Derler, I., Jardin, I., Stathopulos, PB, Muik, M. & Romanin, C. Cholesterol modulates Orai1 channel function. Science. Signal. 9ra10 (2016).

    Article

    Google Scholar

  • Liu, D. et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a drug target. Science. Transl. Med. teneaap9840 (2018).

  • Huang, DQ, El-Serag, HB & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors, and prevention. Nat. Rev. Gastroenterol. Hepatol. 18223–238 (2021).

    Article

    Google Scholar

  • Bechmann, LP et al. The interaction of hepatic lipid and glucose metabolism in liver disease. J. Hepatol. 56952–964 (2012).

    CASE
    Article

    Google Scholar

  • Huang, B., Song, BL & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2132–141 (2020).

    Article

    Google Scholar

  • Wang, YQ, Huang, G., Chen, J., Cao, H. & Xu, WT LncRNA SNHG6 promotes breast cancer progression and epithelial-mesenchymal transition via the miR-543/LAMC1 axis. Breast Cancer Res. Treat. 1881–14 (2021).

    CASE
    Article

    Google Scholar

  • Cao, C. et al. The long non-coding RNA, SNHG6-003, functions as a competing endogenous RNA to promote the progression of hepatocellular carcinoma. Oncogene 361112-1122 (2017).

    CASE
    Article

    Google Scholar

  • Wang, X. et al. LncRNA SNHG6 promotes proliferation, invasion, and migration in colorectal cancer cells by activating the TGF-beta/Smad signaling pathway by targeting UPF1 and inducing EMT through ZEB1 regulation. Int J. Med Sci. 1651–59 (2019).

    CASE
    Article

    Google Scholar

  • Xu, M. et al. lncRNA SNHG6 regulates EZH2 expression by mopping up miR-26a/b and miR-214 in colorectal cancer. J. Hematol. Oncol. 123 (2019).

    Article

    Google Scholar

  • Zhang, Y., An, J. & Pei, Y. LncRNA SNHG6 promotes LMO3 expression by mopping up miR-543 in glioma. Mol. Cell. Biochemistry. 4729–17 (2020).

    CASE
    Article

    Google Scholar

  • Wang, H. et al. lncRNA SNHG6 promotes hepatocellular carcinoma progression by interacting with HNRNPL/PTBP1 to facilitate SETD7/LZTFL1 mRNA destabilization. Cancer Lett. 520121–131 (2021).

    CASE
    Article

    Google Scholar

  • Lee, JN, Zhang, X., Feramisco, JD, Gong, Y. & Ye, J. Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 during a post-ubiquitination step. J. Biol. Chem. 28333772–33783 (2008).

    CASE
    Article

    Google Scholar

  • Kim, H. et al. The UAS domain of Ubxd8 and FAF1 polymerizes upon interaction with long-chain unsaturated fatty acids. J. Lipid Res. 542144-2152 (2013).

    CASE
    Article

    Google Scholar

  • Lee, JN et al. Unsaturated fatty acids inhibit the proteasomal degradation of Insig-1 during a post-ubiquitination step. J. Biol. Chemistry. 28333772–33783 (2008).

  • Thelen, AM & Zoncu, R. Emerging roles of the lysosome in lipid metabolism. Cell Biol Trends. 27833–850 (2017).

    CASE
    Article

    Google Scholar

  • Hao, F. et al. Rheb localized to the Golgi membrane activates mTORC1 localized in the lysosome at the Golgi-lysosome contact site. J. Cell Sci. 131jcs208017 (2018).

  • Korolchuk, VI et al. Lysosomal positioning coordinates cellular nutritional responses. Nat. Cell Biol. 13453–460 (2011).

    CASE
    Article

    Google Scholar

  • Lu, XY et al. Diet induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature 588479–484 (2020).

    CASE
    Article

    Google Scholar

  • Bolger, AM, Lohse, M. & Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 302114–2120 (2014).

    CASE
    Article

    Google Scholar

  • Kim, D., Paggi, JM, Park, C., Bennett, C. & Salzberg, SL Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37907–915 (2019).

    CASE
    Article

    Google Scholar

  • Anders, S., Pyl, PT & Huber, W. HTSeq—a Python framework for working with high-throughput sequencing data. Bioinformatics 31166–169 (2015).

    CASE
    Article

    Google Scholar

  • Love, MI, Huber, W. & Anders, S. Moderate estimation of fold change and scatter from RNA-seq data with DESeq2. Genome Biol. 15550 (2014).

    Article

    Google Scholar

  • Wilhelm, LP et al. STARD3 is involved in the transport of cholesterol from the endoplasmic reticulum to the endosome at sites of membrane contact. EBO J. 361412-1433 (2017).

    CASE
    Article

    Google Scholar

  • Zhan, YY et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol. 8897–904 (2012).

    CASE
    Article

    Google Scholar

  • Chen, J. et al. SAR1B senses leucine levels to regulate mTORC1 signaling. Nature 596281–284 (2021).

    CASE
    Article

    Google Scholar

  • Jung, JW et al. Transmembrane 4L six members of family 5 senses arginine for mTORC1 signaling. Metab cell. 291306-1319 and 1307 (2019).

    CASE
    Article

    Google Scholar

  • Comments are closed.